Autonomous
Navigation on a
Shoestring Budget

How to transform your mobile platform into an autonomous

Figure 1: ROBART | (71980 - 1982)
was a fully autonomous interior security
robot controlled by a single onboard
6502-based microcomputer.

Winter, 1996

machine that can self-navigate in an indoor environment.

by HR. Everett

here is a definitive milestone in the evolutionary development of

an autonomous mobile robot which every would-be creator must

eventually face: the basic platform is completed and appropriately
interfaced to an onboard microcontroller, ready for action. Now what?
How does one go about transforming this creation with so much perceived
potential into an intelligent entity that the very word "robot" seems to sug-
gest? There is generally a big gap looming here between the ultimate
dreams of the developer and the actual capabilities of the current prototype,
probably the single most difficult hurdle to be faced.

Indeed, there have been literally hundreds of government-funded pro-
grams in robotics over the past three decades, involving teams of highly
skilled and experienced researchers with budgets measured in millions of
dollars. Yet despite such efforts, there still are no fielded military robotic
systems (although some are getting close!), and similarly there are only a
handful of commercial applications, limited in every case to very structured
operating scenarios. In retrospect, the biggest stumbling block to success
has been achieving a practical and reliable capability for autonomous navi-
gation.

Approach

So how then is the everyday home hobbyist supposed to overcome this
challenge? Most of us private citizens don't have easy access to massively
parallel computer architectures and exotic laser-based sensors. Yet this defi-
ciency in available resources is often the hobbyist's best asset, for necessity
is the mother of invention, as the cliché goes. The home robotics enthusiast
who doesn't know a particular problem is supposedly almost insurmountable
will sometimes find a very practical way to get the job done, simply
because he or she lacks the funds to explore some of the more expensive
alternatives. Particularly if we bound the problem and don't have to formu-
late a 100-percent solution addressing the full spectrum of difficulties. In-
keeping with this spirit, this series of articles outlines a simplistic and
methodical approach for incrementally bridging this technological hurdle,
attaining true autonomy in an ordinary home environment.

The first step in formulating such an approach is to define the objective.
It is assumed that we have already built a computer controlled platform
capable of mechanical motion with measurable (at least with some degree
of accuracy) displacement, speed, and direction. The novelty of such an
achievement wears off quickly, however, if not augmented by some higher
level of intelligence that can suitably direct the motions of the platform.
Simply put, a successful mobile robot must be able to get from point A to
point B, and without running into anything. To do this in a robust fashion,

The Robotics Practitioner 15



without human intervention, thus
becomes our objective.

A number of strategies for achiev-
ing this objective have been proposed
over the years. For our purposes
these can be subdivided into three
basic categories: 1) reactive control,
2) representational world modeling,
and 3) some combination of both.
Reactive control refers to a behavior-
based strategy that directly couples
real-time sensory information to
motor actions, without the use of
intervening symbolic representations
that attempt to model, in an absolute
sense, the robot's operating environ-
ment. Arkin (1992) lists the follow-
ing general characteristics of reactive
control:

« Tt is typically manifested by a
decomposition into primitive
behaviors.

« Global representations of the
robot and its surroundings are
avoided.

« Sensor decoupling is preferred
over sensor fusion.

« Tt is well suited for dynamically
changing environments.

Navigation schemes that fall into
the representational world modeling
category traditionally take a different

approach, specifically incorporating
an absolute world model that repre-
sents the robot and its surroundings
from a global perspective. Path plan-
ning algorithms operate on the infor-
mation stored in this model to gener-
ate appropriate trajectories for robot
motion. Since sensor information
describing the perceived surroundings
is measured relative to the robot but
stored in absolute coordinates in the
model, it is imperative that the robot
be able to accurately determine its
absolute position and orientation.
Obtaining such information with the
required accuracy in real-time is the
fundamental difficulty with imple-
menting the representational world
modeling approach in practice.

The first article in this series
describes a very basic reactive-control
navigation scheme based upon a rela-
tive model, implemented about 15
years ago on ROBART I (Figure 1) as
part of a crude feasibility demonstra-
tion of a robotic security concept.
The use of a relative, as opposed to
absolute, model eliminates the depen-
dency on accurate and timely position
information, but with some associated
tradeoffs in performance, as will be
discussed. A follow-on article in the

7 Spring issue will explore a more

Near-Infrared Proximity Scanner 3

Tactile Strip

LM-1812 Sonar

Tactile Feeler

Near-Infrared Proximity Sensors

Tactile Bumpers - _@ =
= ; A

// |

sophisticated absolute world model-
ing scheme developed for use on
ROBART 11, an improved second-
generation prototype.

Background

ROBART I was my thesis project at
the Naval Postgraduate School in
Monterey, CA (Everett, 19822;
1982b). Its assigned function was to
patrol a normal home environment,
following either a random or preset
pattern from room to room, checking
for unwanted conditions such as fire,
smoke, intrusion, etc. The security
application was chosen because it
demonstrated performance of a useful
function without requiring an end-
effector or vision system, significant-
ly reducing the overall system com-
plexity. The robot could automatical-
ly locate and connect with a free-
standing recharging station when bat-
tery voltage began running low.
Patrols were made at random inter-
vals, with the majority of time spent
immobile in a passive intrusion-detec-
tion mode to conserve power.

ROBART's 12V 20Ah lead-acid
battery gave about six hours of con-
tinuous service and then required 12
hours of charge. Roughly one hour
of power was available to locate the
charging station (by means of a visual

Tactile Strip

Near-Infrared Proximity Sensors

Tactile Bumpers

Tactile Feeler

Tactile Bumpers

Figure 2: Location of optical and ultrasonic collision avoidance sensors employed on ROBART |.

16

The Robotics Practitioner

Winter, 1996



Figure 3: The ten near-infrared proximity sensors
on ROBART | were adapted from surplus circuit
boards used in the manufacture of a popular toy (now
obsolete). See Figure 1 and Figure 2 for placement.

homing beacon) after the battery monitor circuit detected a
low condition. The homing beacon was activated by a
coded signal sent out from an RF transmitter located atop
the robot’s head. When a demand was sensed after connec-
tion, the recharging supply was enabled. The robot could
elect to seek out the recharging station before a low-battery
condition actually arose, such as between patrols.

The most simplistic reactive control capability for a
mobile robot is perhaps illustrated by the basic wander rou-
tine. See the work of several research groups, including:
Everett, 1982; Brooks, 1986; Arkin, 1987; Anderson &
Donath, 1988. The term wander is used here to describe a
behavioral primitive that involves traveling more or less in
a straight line until an obstacle is encountered, altering
course to avoid impact, then resuming straight-line motion.
Such a capability can be simply hard-wired, rule-based,
model-based, or inherent in a more sophisticated layered
subsumption architecture (Brooks, 1986).

The wander routine employed on ROBART I was based
on a six-level scheme of proximity and impact detection
using the following sensor inputs (see Figure 2):

* A positionable near-infrared proximity scanner mount-
ed on the head.

*» A forward-looking LM-1812 sonar mounted 20 inches
above the floor.

* Ten near-infrared proximity detectors (Figure 3) to
sense close (< 18 inches) obstructions.

* Projecting “cat-whisker” tactile sensors to detect pend-
ing (< 6 inches) collisions.

» Contact bumpers to detect actual impact.

» Drive motor current sensors to monitor for overload
condition indicative of a stall.

The first two categories were loosely classified as non-
contact ranging sensors that looked out ahead of the robot
for planning purposes, while the next three were considered
close-in proximity and tactile sensors requiring immediate
action. Drive motor overload was a last resort internal sen-
sor in the event contact with an object was for whatever
reason not detected by any of the above.

Winter, 1996

Figure 4: The parabolic reflector at top center
focused reflected energy onto a PIN photodiode
detector employed in the receiver portion of the near-
infrared proximity scanner.

As ROBART I predated the introduction of the popular
Polaroid ultrasonic ranging module, the forward-looking
sonar was based on a Massa piezo-electric transducer inter-
faced to the National Semiconductor LM-1812 integrated
circuit (now obsolete), originally developed for fish finders.
A custom head-mounted near-infrared proximity scanner
(Figure 4) provided reliable detection of diffuse wall sur-
faces for ranges out to six feet. This sensor could be posi-
tioned at any angle up to 100 degrees either side of center-
line by panning the head, and was extremely useful in
locating open doors and clear paths for travel. Excellent
bearing information could be obtained—for example, both
sides of an open doorway could be located within one inch
at a distance of five feet.

Those sensors monitoring ROBART's close-in environ-
ment (proximity detectors, feeler probes, bumpers, and
drive current overload) were considered high priority and
consequently read by a maskable interrupt routine. Unless
deactivated by the main program loop, the interrupt routine
continuously monitored the sensor output states, and would
redirect the motion of the robot in accordance with prepro-

The Robotics Practitioner 17



grammed responses specifically tai-
lored to the individual sensors in
alarm. By way of illustration, a pre-
programmed response for a right-
front bumper impact would consist of
the following steps:

» Stop all forward travel.

» Tarn steering full right.

» Back up for x number of seconds.

+ Monitor rear bumper for impact.

« Stop and center steering.

» Resume forward travel.

To facilitate somewhat more intelli-
gent movement than the purely reac-
tionary “bump-and-recover” interrupt
routines, the intermediate-level sofi-
ware would repeatedly poll the sonar
and near-infrared scanner on each
pass through the main loop. These
longer range sensors were tasked with
monitoring the area in front of the
robot and storing a suitable represen-
tation of detected targets in a relative
model as illustrated in Figure 5. The
wander algorithm reacted to the infor-
mation in the model by choosing the
Jeast obstructed direction for contin-
ued transit in the event the forward
path became blocked. Since all zones
were equally weighted in a binary
fashion (either blocked or clear), the
least obstructed direction was taken
to be that opening defined by the
largest number of adjacent clear
zones. The inherent simplicity of this
modeling scheme enabled on-the-fly
collision avoidance response, without
the robot having to "stop and think"
before continuing on its way.

Axis of Travel

15

Left Side

Hallway Navigation

The role of a world model (for our
purposes) is essentially two-fold:
1) to represent the relative locations
of surrounding obstructions in order
to formulate an appropriate avoidance
maneuver and 2) to support the glob-
al generation of a path to the destina-
tion goal. Implementation of this sec-
ond attribute was addressed by adding
a general awareness of the relative
locations of the various rooms along
either side of a definitive hallway,
resulting in a fairly robust navigation
capability that lent itself to imple-
mentation on an 8-bit microprocessor.
The recharging station optical beacon
was suitably positioned in a known
location as shown in Figure 6 to assist
the robot in entering the hallway.
Once in the hallway, the robot would
move parallel to the walls in a reflex-
ive fashion, guided by the near-
infrared proximity sensors. General
orientation in the hallway could be
determined by knowing which direc-
tion afforded a view of the beacon.

With a priori knowledge of where
the individual rooms were situated
with respect to this hallway,
ROBART I could proceed in a semi-
intelligent fashion to any given room,

ssimply by counting off the correct

number of open doorways on the
appropriate side of the hall. Each
room was assigned a number, with
odd-numbered rooms on the left in
increasing order when moving away
from the beacon (see again Figure 6).
A dedicated behavioral routine took

care of the specifics associated with
guiding the robot through the detect-
ed door opening into the room of
interest. Once inside a particular
room, the robot’s wander routine
would tend to hug the wall, traversing
a rectangular path which eventually
brought it back to the open doorway.
By again invoking a doorway pene-
tration behavior, the robot could re-
enter the hallway and turn in the
direction of the next room to be visit-
ed.

ROBART I thus knew in which
room it was located at any given time,
but not its absolute X-Y position or
heading within that room. In a global
sense, this could be regarded as oper-
ating from a relative navigational map
as opposed to an absolute map depict-
ing the actual floorplan. Interestingly
enough, we humans tend to function
in much the same fashion, in that we
know where objects are with respect
to one another, and have but a fuzzy
feel for their absolute representation.
Upon entering our darkened kitchen
for a late-night snack, for example,
we reach instinctively to a certain
location for the light switch, relative
to the doorway of entry. Such a rela-
tive representation makes it much
easier to retain the necessary informa-
tion in memory for a large number of
locations. Imagine how cluttered our
brains would get if we were forced to
store an absolute model of everything
we observed. The same principle
applies to an 8-bit microprocessor
with a limited 64-Kb address space.

Bath, Room 4 Room 2
Recharger
7
Hallway °
Bath T Kitche+
Room 3 Room 1
! Dining  Living |
Right Side 0o

Figure 5: The sensor fusion model employed on
ROBART | consisted of sixteen wedge-shaped zones
relative to the direction of travel (Everett, 1982b).

18

The Robotics Practitioner

Figure 6: Floorplan of the operating environment for
ROBART | showing the location of the recharging sta-
tion at the right end of the hallway.

Winter, 1996



Requirements

To replicate a similar navigational
capability on a mobile platform of
your own design, assuming the floor-
plan reflects a suitable hallway ori-
ented layout, only a few simple
behavioral primitives must be
addressed:

» Wander—Causes the platform to
move forward, turning away from
any detected obstructions in its
path.

* Find Door-Locates an open door-
way on the specified side of the
robot.

* Enter Door—Reflexively guides the
robot safely through the detected
doorway.

* Verify Direction—Confirms the robot
is traveling in the proper direction
(optional).

In addition, some means of estab-
lishing the relative relationships of
the rooms is required, such as a
linked-list representation, or even
more simply, a lookup-table as was
implemented on ROBART I. A cou-
ple of state variables are also required
to tell the robot which room it cur-
rently occupies, and in the case of the
hallway, the direction of motion (in
terms of increasing or decreasing
room numbers, see Table 1). The
next section discusses the actual
implementation of these basic behav-
ior primitives, followed by one possi-
ble approach to developing a simple
relative world model for hallway nav-
igation.

Implementation

The collision avoidance sensing
needs of a simple wander routine can
be met with three optical proximity
sensors arranged in a fan-shaped pat-
tern as depicted in Figure 7. The
Banner Engineering Valu-Beam®
SM912D diffuse proximity sensor
(Banner, 1993a, 1993b) shown in
Figure 8 performs well in this mode,
draws only 40mA at 12V DC, and
provides a simple binary (target or no
target) output line for ease of inter-
face. A gain potentiometer adjust-
ment is provided to set the maximum
effective detection range for typical
diffuse target surfaces (such as a

Winter, 1996

wall) anywhere out to about eight
feet. Detection setpoints of 12 inches
for the left and right sensors and 18
inches for the center sensors are good
starting points, but you should experi-
ment for best results. The cost of this
unit is a bit high by most hobbyists'
standards, about $80, but the payback
is immediate availability and very
reliable operation. Jones and Flynn
(1993) describe a method for making
your own low-cost proximity sensor
with a somewhat shorter effective
range, based on the Sharp GP1U52X
near-infrared detector module.
Similarly, McManis (1995) presents
details for building a multi-zone
proximity sensor using the Sharp
IS1U60 detector.

Alternatively, three ultrasonic trans-
ducers can be multiplexed to a single
Polaroid ranging module (Everett,
1995a) to achieve similar effect, but
the interface requirements are a little
more complex. The highest probabil-
ity of obstacle detection is of course
achieved with redundant coverage
from both optical and ultrasonic sen-
sors. For such dual-mode implemen-
tations, the polling software can sim-
ply logically OR the outputs together
for any sensors aligned along a com-
mon axis. In this fashion, if either a
sonar or an optical sensor reports an
obstruction in a particular direction,
the robot will turn away. For sake of
simplicity, however, the remainder of
this discussion will be limited to a
basic configuration involving three
optical proximity sensors only.

The simplest implementation of the
wander algorithm is probably rule-
based (as opposed to the model-based
collision avoidance strategy depicted
in Figure 5), taking the form of a
series of conditionals that alter the
robot's forward travel in response to
potential obstacles detected by the
forward looking sensors. Obviously,
if the right-hand sensor sees a target,
the robot turns left, whereas if the
left-hand sensor sees something, the
robot turns right. If the center sensor
also sees the target, the rate of turn is
increased. However, if only the cen-
ter sensor sees a target, the robot
should turn either left or right in
accordance with a preset variable

The Robotics Practitioner

) oo Qi

___._'—>
Motion

7
Figure 7: Three optical proximi-
ty sensors, three sonar sensors,
or the superposition of both can
be used to implement a simple
wander routine. Maximum effec-
tive detection range for the center
unit should be just a bit further
than for left and right.

Figure 8: Banner Engineering's
Valu-Beam® SM912D diffuse prox-
imity sensor has an adjustable
gain control that sets the maxi-
mum detection range to a diffuse
reflector such as a wall surface.
Unpainted sheetrock can be
detected at a distance of eight
feet.

Value Meaning

00 robot not in hallway
01 decreasing room numbers
02 increasing room numbers

Table 1: Interpretation of possi-
ble values for the state variable
representing the robot's direction
of motion in the hallway.

19



(turn_preference). And finally, when
all three sensors detect an obstacle,
the robot should pivot in place (in the
case of a differentially steered plat-
form) or back up slightly before turn-
ing (in the case of tricycle or
Ackerman steering).

To ensure stability, these predefined
response actions should continue for
some specified time interval (0.5 to 2
seconds typical) after the condition
clears. When sensor gain, turning
rate, and delay parameters are appro-
priately tuned through experimenta-
tion, this limited amount of hardware
can be used to implement an effective
wall hugging motion that guides the
robot safely down the hallway.
Similarly, prespecifying a pivot direc-
tion for the blocked condition causes
the platform to traverse the perimeter
of a room in a rectangular pattern,
either clockwise or counterclockwise,
depending on the current value of
turn_preference.

The find door behavior requires
some physical means for locating an
opening on either side of the hallway.
This task can be readily accomplished
with a pair of side-looking Valu-
Beam® SM912D sensors set for a
maximum detection range of about
four feet. Alternatively, two side-
mounted sonar transducers can be
employed for this purpose. Optical
sensors have a bit of an advantage in
that they can be aimed forward just a
bit to give advance warning in time to
turn, whereas sonar sensors work best
when the beam is kept nearly orthog-
onal to the target surface, due to
problems associated with specular
reflection (Everett, 1995a). If your
robot has a positionable head, you
can get by with a single sensor and
mechanically point it in the desired
direction. This is the approach
employed on ROBART I, but not rec-
ommended unless the positionable
head is required for other purposes as
well. Tt is much simpler to electroni-
cally multiplex two (or more) sensors.

The enter door primitive requires no
additional sensor hardware. Once the
doorway is detected by find door, a
turn is initiated in the proper direc-
tion. A slight delay might be required
first to achieve the proper starting

20

point, but this can easily be deter-
mined through trial and error. The
actual rate of turn must also be opti-
mized for the dynamics of your par-
ticular platform. The secret to suc-
cess here lies in the fact that the wan-
der behavior is not inhibited during
execution of the enter door routine.
If at any time the forward looking
sensors that support wander detect a
target, the enter door routine is termi-
nated and wander takes over. The
reflexive avoidance behavior of wan-
der then adjusts the platform's direc-
tion of motion accordingly to keep it
from impacting the sides of the door-
way, the door itself, or an adjoining
wall. The result is seamless and
deceptively intelligent continuous
motion.

High-level software determines
which way the robot should turn
when re-entering the hallway by
checking to see if the current room
number is odd or even, comparing the
next room number on the visit list to
the current room number, and then
setting the turn_preference register
accordingly. The bigger challenge is
deciding when to make the turn. If
no doorways directly oppose each
other in the hallway, the solution is

rather trivial, as the opposite wall

(Figure 9) will force the wander
behavior to turn at a distance of
approximately 18 inches when the
center proximity detector picks up a
reflection. The calculated value
stored in the turn_preference register
ensures the robot turns in the correct
direction.

_

Figure 9: Upon re-entering the
hallway, the robot turns in the pre-
calculated direction stored in
turn_preference when the center
proximity sensor detects the oppo-
site wall.

The Robotics Practitioner

If there is another open doorway
directly across the hall this quick and
dirty solution fails for obvious rea-
sons. In this more complicated sce-
nario, you must use the two side-
looking proximity detectors to deter-
mine when the robot has passed
through the doorway and into the
hall, and then force a turn. You can
postpone solving this dilemma for the
time being, if so desired, by simply
closing off one of the two doors and
eliminating that room number from
the linked list representation, to be
discussed later. The idea here is to
start simple and then add smarter rou-
tines as you become more experi-
enced. You can learn a lot about sen-
sor interaction with various target sur-
faces by observing your initial proto-
type, and this valuable experience
will provide significant insight into
how to improve your design.

The verify direction primitive
allows confirmation that the robot is
indeed properly oriented in the hall-
way (moving in the direction of
increasing or decreasing room num-
bers). While not absolutely neces-
sary, this feature adds significantly to
the robustness of the relative naviga-
tion scheme. On ROBART I this task
was accomplished by activating the
optical beacon on the recharging sta-
tion and then checking to see if the
robot could detect it-allowing the
robot to determine if it was facing the
beacon. This technique was available
at no extra cost since the beacon
tracking hardware was already in
place to support automatic recharg-
ing, but such may not be the case
with your design. In any event, a
much simpler and more effective
solution is now possible due to the
recent introduction of low-cost flux-
gate compasses. While the more
expensive models are accurate to
within about a degree, even the very
cheapest versions (around $40 at
many auto parts stores) are more than
sufficient to eliminate a 180-degree
ambiguity in heading. Chapter 12 in
Sensors for Mobile Robots (Everett,
1995b) describes the principle of
operation and interface requirements
for these devices in detail.

Winter, 1996



The most expeditious representation of the room inter-relationships is
probably in the form of an indexed-array data structure as illustrated in
Table 2, which can be easily implemented on an 8-bit Microprocessor
using the indexed addressing mode. The index serves as a pointer to the
current room number, and by decrementing or incrementing the index
accordingly, you can step through memory in the same order the robot
would encounter the rooms as it traverses down the hall. Checking to see
if the destination room number is odd or even determines on which side of
the hall the doorway will be found. Upon first glance it may seem like the
array structure is not even necessary, as the data value merely echoes the
index value, and a simple variable current_room would suffice. For an
ideal scenario such as depicted in Figure 6, that is indeed correct. The use
of an array, however, allows additional information about each room to be
encoded in the upper nibble, while the lower nibble represents the room ID
number.

For example, the simplistic case illustrated above assumes there are an
equal number of rooms on both sides of the hall, and repetitive increments
of the index will step through memory in precise correlation to the robot's
passage by each of the rooms. In reality, such may not be the case, as
rooms can vary in size. An easy way to preserve the validity of the algo-
rithm in this situation is to allow for the representation of phantom rooms
that subdivide the space occupied by a single large room into the appropri-
ate number n of smaller rooms. Since n-1 of the phantom rooms will not
have detectable doorways, they are specially marked by setting a designat-
ed bit in the upper nibble so the algorithm will increment the index without
waiting for actual doorway detection. Other bits in the upper nibble can be
used to mark rooms that have doorways facing another door directly across
the hall, rooms containing battery recharging facilities, or even rooms
which lead to other rooms.

The basic algorithm (not yet enhanced to accommodate phantom rooms)
is presented in flowchart format in Figure 10. If the robot is exiting room
1 and wants to go next to room 4 (see again Figure 6), a left turn is in
order upon entering the hallway, since the current room is odd and 4 > 1.
The index is initially pointing to room 1. The algorithm first resets the
direction_of_motion flag, then waits until the robot is traversing down the
hallway with a wall detected on both sides (in order to avoid mistaking the
doorway just exited for the anticipated detection of room 2). After this
hallway verification condition is achieved, the right-hand doorway detector
should next pick up the opening that marks the entrance to room 2. The
room index is incremented but does not yet match the destination room
number, so the software loops back up and waits for doorway 2 to clear.
After walls are again detected on both sides of the robot, the left-hand
detector is monitored for the opening at room 3, and so forth. When the
room index finally matches the destination room number, the algorithm
calls the enter_door routine and turns the robot left or right, based on
whether the room to be entered is odd or even, and the current direction of
motion.

Table 2: A one-dimensional

l Yes

Turn Preference
Set to Right

Tum Preference
Set to Left

Hallway
Confirmed?

Doorway
Detected?

lYes

Increment
Room Number

array data structure contains all

At
Destination?

0Odd
Number?

the necessary information to Address Value
describe the room inter-relation- XX00 00
ships in support of the relative XXO01 01
navigation scheme. The upper  yxqo 02
nibble of the data value can be XX03 03
used to encode special informa- XX04 04
tion, while the lower nibble XX05 05
reflects the assigned room num- XX06 06

ber.

Enter Door
to Left

Enter Door
to Right

Winter, 1996 The Robotics Practitioner

f—

:

Figure 10: Flowchart of the basic hall-
way navigation algorithm.

21



Helpful Hints

The single most important rule is to
start simple and not try to solve all
possible problems with your first
design. You don’t, for example, have
to be able to navigate in every room
in your house right off the drawing
board. Select a couple of representa-
tive rooms along your hallway that
lend themselves well to the concept,
and get the system up and running.
Watch what happens and go from
there. Once you have your control
algorithms stabilized through optimal
turn rates, velocity profiles, and sen-
sor gain settings, you can start adding
to the robot's overall intelligence
through incorporation of smarter
algorithms. Observe the inevitable
failure modes and determine what
made the system do what it did, then
adjust accordingly.

The left and right collision avoid-
ance sensors should be angled out
just enough to pick up the wall sur-
face when the robot gets to within
about four to six inches, running par-
allel to the wall. If the fan-out angle
is too large, the robot may zigzag
instead of hugging the wall, and there
may also be some blind spots in the
forward collision avoidance coverage.
An angle of about 20 degrees from
center should work fairly well.
Zigzag motion will also result if the
avoidance reaction is too severe, due
either to excessive turning rate or too
much execution time.

The maximum range of the door-
way detection sensor should be set at
a greater distance than will be
observed under worst-case conditions
in the hallway, yet not enough to pick
up a distant target inside the room.
Four feet is a recommended starting
point for a three-foot hallway. You
may want to increase it a bit if you
plan to scan the sensor back and forth
in search of a doorway from the
inside of a room. Don't set the gain
high enough to pick up the far wall in
the hallway, though, or you'll never
find the door.

It's best to “debounce” your door-
way detection sensor outputs through
low-pass filtering to eliminate erro-
neous readings. In other words,
require the sensor to show an opening

22

for some number of consecutive
reads, with a slight delay each pass
through the loop, before reacting to
the data. This way if a momentary
loss of target occurs due to specular
reflection, the robot won't turn prema-
turely. When an actual doorway is
present, the sensor output will toggle
and remain in the new state for an
appreciable length of time. Don't
delay too long, however, or you'll
overshoot the door.

Note that room doors usually swing
inward, and almost always are situat-
ed in a corner so the door folds back
90 degrees against an adjoining wall
(Figure 11). This arrangement allows
for more efficient use of wallspace
and makes the door easier for humans
to shut upon exiting the room, relative
to a door that folds back 180 degrees
against its own wall. Such a struc-
tured relationship can be exploited to
a certain extent by the robot when
attempting to re-enter the hallway, in
that the door itself can be used to
trigger a turn through the open door-
way. For example, if the robot were
to enter Room 1 in Figure 6 and
make three right turns as it followed
the wall perimeter, it would then be
approaching the open doorway as

'shown in Figure 11. By resetting

turn_preference at that point to left,
the robot would exit through the open
doorway back into the hall.

In the real world, however, most
rooms are not clutter free as implied
above. If you have problems locating
the doorway in order to exit a room,
you may want to experiment with
polarized retro-reflective optical sen-
sors, such as the Banner Q85VR3LP.
The advantage of this type over the
diffuse variety is unambiguous detec-
tion of a retro-reflective tape that can
be attached to doorway edges for pos-
itive identification. This type of sen-
sor will not respond to diffuse target
surfaces such as walls, or even direct
reflection of its beam from a mirror.
A retro-reflective target shifts the
beam polarization in a unique fash-
ion, and only this returning polariza-
tion pattern will trigger the detector.
The disadvantage of this scheme of
course is that it requires some modifi-
cation of the robot's operating envi-

The Robotics Practitioner

ronment, although the tape strips are
relatively unobtrusive.

Once you get the basic behavior
primitives up and running, the fun
really starts! Buy a cheap electronic
compass, interface it to your onboard
computer, and see what performance
improvements result from this addi-
tional navigational information. The
task of exiting a room, for example, is
greatly simplified if you can positive-
ly identify the correct wall to scan for
an opening. Implement a rudimenta-
ry dead-reckoning capability and
improve your algorithms even more.
Incorporate time-out or exit condi-
tions for your behavior primitives to
preclude getting caught in an endless
Joop when something goes wrong.
Augment your code with trap recov-
ery routines that take over if the robot
gets boxed into a repetitive cycle that
leads nowhere. Add exception han-
dlers to deal with opposing doorways,
a door situated at the very end of a
hallway, or a room with two doors.

Perhaps you may choose to incor-
porate a look-ahead scanner of some
type and expand your world model to
include a forward-area representation
similar to that depicted in Figure 5.
You can even develop a graphical
map display that shows which room
the robot has most recently detected.
Take it one step at a time and learn as
you go. Mobile robotics is probably
the ultimate hobby from the stand-
point that even a well-planned project
is never finished, and the continuing
satisfaction of making further
improvements is essentially unlimit-
ed.

%}1 Doorway

Figure 11: A reflexive avoid-
ance maneuver (preset in this
case for a left turn) triggered by
detection of the open door can be
exploited to facilitate room exit
through the adjacent doorway.

Winter, 1996



Summary

This first article discusses a novel
Iow-cost solution (admittedly over
simplistic) to the global navigation
problem that can be easily imple-
mented on an 8-bit microprocessor at
minimal cost. The approach is basi-
cally insensitive to the type of drive
and steering configuration employed
on the platform, and does not even
require a dead-reckoning capability of
any sort. We have bounded the prob-
lem by limiting our operation to
indoor environments with easily tra-
versible floor surfaces, and more
specifically, solely within the con-
fines of a series of rooms arranged in
ordered fashion along either side of a
defined hallway. Quite obviously
these limitations preclude any mean-
ingful consideration of such a relative
navigational scheme in serious real-
world applications, but it is hoped
this concept will provide an educa-
tional stepping stone for the interest-
ed reader with somewhat limited

financial resources and/or programming experience. A number of suggestions
were included for enhancing this most basic implementation for those interested
in probing further. An even more sophisticated navigational solution based on
representational world modeling will be discussed in the next issue.

About the Author

Commander H. R. (Bart) Everett, USN (Ret.), is the former Director of the
Office of Robotics and Autonomous Systems at the Naval Sea Systems
Command, Washington, DC. He currently serves as Technical Director for the
tri-service Mobile Detection Assessment Response System (MDARS) robotic
security program under development at the Naval Command Control and Ocean
Surveillance Center, San Diego, CA. Active in the field of robotics research for
over 20 years, with personal involvement in the development of 11 mobile sys-
tems, he has more than 70 technical papers and reports published and 16 related
patents issued or pending. He serves on the Editorial Board for Robotics and
Autonomous Systems magazine and on the Board of Directors for the
International Service Robot Association, and is a member of Sigma Xi, the
Institute of Electrical and Electronics Engineers (IEEE), and the Association for
Unmanned Vehicle Systems International (AUVSI).

everett@nosc.mil
http://www.nosc.mil:80/robots/index.html

Portions of this article were adapted from the book Sensors for Mobile Robots:
Theory and Application, published by AK Peters, Ltd., Wellesley, MA,

ISBN 1-56881-048-2.

References

Anderson, T.L., Donath, M., "Synthesis of Reflexive Behavior for a Mobile Robot Based Upon a Stimulus-Response
Paradigm,” SPIE Mobile Robots III, Vol 1007, W. Wolfe, Ed., Cambridge, MA, pp. 198-211, November, 1988.

Arkin, R.C., "Motor-Schema-Based Navigation for a Mobile Robot: An Approach to Programming by Behavior," TEEE
International Conference on Robotics and Automation, Raleigh, NC, 1987.

Arkin, R.C., "Behavior-Based Robot Navigation for Extended Domains,” Adaptive Behavior, Vol. 1, No. 2, MIT,

Cambridge, MA, pp. 201-225, 1992.

Banner, Photoelectric Controls, Product Catalog, Banner Engineering Corp., Minneapolis, MN, 1993a.
Banner, Handbook of Photoelectric Sensing, Banner Engineering Corp., Minneapolis, MN, 1993b.

Borenstein, J., Koren, Y., "Real-Time Obstacle Avoidance for Fast Mobile Robots in Cluttered Environments," IEEE
International Conference on Robotics and Automation, Vol. CH2876-1, Cincinnati, OH, pp. 572-577, May, 1990a.
Borenstein, J., Koren, Y., "Real-Time Map Building for Fast Mobile Robot Obstacle Avoidance," SPIE Vol. 1388, Mobile

Robots V, Boston, MA, November, 1990b.
Brooks, R.A., "A Robust Layered Control System for a Mobile Robot," IEEE Journal of Robotics and Automation, Vol.

RA-2, No. 1, pp. 14-20, 1986.

Everett, HR., "A Computer Controlled Sentry Robot," Robotics Age, March/April, 1982a.
Everett, HR., "A Microprocessor Controlled Autonomous Sentry Robot", Masters Thesis, Naval Postgraduate School,

Monterey, CA, October, 1982b.

Everett, HR., "Understanding Ultrasonic Ranging Sensors,” The Robotics Practitioner, Fall, 1993a,
Everett, HR., Sensors for Mobile Robots: Theory and Application, ISBN 1-56881-048-2, AK Peters, Ltd, Wellesley, MA,

1995b.

Jones, 1., Flynn, A M., Mobile Robots: Inspiration to Implementation, ISBN 1-56881-011-3, AK Peters, Ltd., Wellesley,

MA, pp. 106-111, 1993.

McManis, C., "Turning Toys into Tools," Circuit Cellar INK, Issue #63, pp. 24-35, October, 1995.

Winter, 1996

The Robotics Practitioner 23



