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Abstract: Maintaining link connectivity between a mobile robot and its control station in a non-line-of-sight 

environment is challenging.  One solution is to use intermediate relay radios that the robot can carry and 

deploy when and where needed to maintain the link.  However, the precise placement locations for the 

relays are not known ahead of time.  Therefore, the deployment decision must be formulated online and the 

relays deployed before the link with the control station breaks. A link-quality estimator is developed based 

on video throughput and received signal strength indicator data.  The estimator takes into account human 

perception of video quality that is obtained via subjective testing by an operator.  The data is used to train 

the link-quality estimator, which issues an alert that can be used as a trigger for an automatic relay 

deployment mechanism or to advise the operator to manually deploy relays before the link between the 

robot and control station fails. 

1 INTRODUCTION 

Tactical mobile robots have been increasingly used 

by the military over the past several years.  This is 

especially true for Explosive Ordnance Disposal 

(EOD) teams that use robots to investigate and 

neutralize Improvised Explosive Devices.  These 

robots are remotely controlled from the operator 

control unit (OCU) using digital radios.  The high 

operating frequency of these radios requires a line-

of-sight (LOS) to the OCU, which is difficult to 

maintain in urban environments.  The link between 

the robot and OCU can fail, usually rather quickly, 

when operating beyond LOS due to multipath 

interference and signal fading. 

Controlling a robot via a tethered connection, 

typically fiber-optic, eliminates the LOS problem 

but introduces new ones.  Tethered connections can 

snag and break, limiting mobility.  Advanced radio 

systems that utilize sophisticated modulation 

techniques and take advantage of MIMO antenna 

technology thrive in multi-path environments and 

can overcome the LOS limitations to a degree.  

However, obstacles that severely block and attenuate 

the signal can still be problematic. 

The use of relays, on the other hand, adds an 

unprecedented degree of freedom to where robots 

can operate.  Relays can entirely overcome severe 

obstacle blockages so long as a LOS can be 

maintained with adjacent radios in a chain of relays.  

Determining the placement location of such relays is 

critical.  The focus of this paper is the formulation of 

a link-quality (LQ) estimator, the output of which is 

used either by the robot (automatically) or the 

operator (command sent from the OCU) to release a 

relay before the link breaks.  Section 2 provides a 

brief background of various relay systems designed 

for tactical robots.  Section 3 discusses the LQ 

estimator design.  Simulation results are outlined in 

section 4, and section 5 concludes the paper. 

2 BACKGROUND 

The solution to address the LOS requirement 

between a tactical robot and its OCU began in 2002 

under the Autonomous Mobile Communications 

Relay (AMCR) project (Nguyen, H. G., Pezeshkian, 

N., Raymond, M., Gupta, A., Spector J. M., 2003).  

The goal of the AMCR system was to provide 

extended range and non-line-of-sight (NLOS) 

operational capability for tactical robots.  This was 

accomplished through the use of dedicated mobile 

relay robots (or mobile nodes) that followed the lead 

robot in a convoy formation and automatically 

stopped when needed to maintain the link.  The 
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radios on-board the lead robot, mobile nodes, and 

OCU formed a mesh network that allowed the 

operator to teleoperate the lead robot based on video 

relayed to the OCU. 

The mobile nodes must be set up in a specific 

order in such a convoy since each mobile node is 

programmed to follow the robot in front of it.  In 

addition, each mobile node is programmed to 

monitor the received signal strength indicator (RSSI) 

data of the node immediately behind it.  For 

example, the last mobile node in the convoy 

monitors the RSSI of the OCU.  The RSSI data, 

which is used as a measure of the link quality, is 

compared to a predetermined threshold, below 

which the mobile node stops to maintain the link. 

The AMCR solution proved to be very successful 

and the commercial-off-the-shelf (COTS) 802.11b 

radios and processor boards were extremely cost 

effective.  However, the AMCR system was a 

research project and never designed for field use, 

since the mobile nodes were expensive and 

logistically impractical. 

A more realistic solution was developed under 

the Automatically Deployed Communication Relays 

(ADCR) project (Pezeshkian, N., Nguyen, H. G., 

Burmeister, A., 2007).  The ADCR system shown in 

Figure 1 consists of a Deployer and several Relay 

“Bricks”.  The Deployer carries the Relay Bricks 

and mounts onto a small ground robot. 

 

 

Figure 1: ADCR Deployer mounted on an iRobot PackBot 

with one deployed and five stowed Relay Bricks. 

The Deployer and the Relay Bricks each have the 

same radio hardware and RSSI-based link-quality 

estimator that is used by the AMCR system.  

However, the only mobile node is the Deployer, 

therefore, the link monitoring and the decision to 

eject a Relay Brick is formulated by the Deployer 

radio.  Once a Relay Brick is ejected it self-rights 

and extends the antenna.  As the operator controls 

the robot along its path more Relay Bricks are 

ejected as needed to maintain the link. 

The success of ADCR led to several licensing 

agreements with commercial developers.  

Subsequent projects led to additional developments 

that improved upon the system.  For example, the 

redesigned Deployer of the Automatic Payload 

Deployment System (APDS) (Pezeshkian, N., 

Nguyen, H. G., Burmeister, A., Holz, K., Hart, A., 

2010) allows a robot to carry and deploy not only 

Relay Bricks but a wide range of other types of 

payloads, such as leave-behind sensors and 

containers.  The container payloads can be used to 

carry food, ammunition, medical kits, and anything 

else that fits within.  The Relay Bricks were also 

redesigned to contain faster radios and an improved 

antenna lift mechanism as shown in Figure 2. 

 

Figure 2: APDS Deployer mounted on an iRobot PackBot.  

Various payload types are shown around the robot. 

The interest that was generated by numerous 

publications and successful demonstrations of the 

APDS and ADCR systems led the Naval EOD 

Technology Division (NAVEODTECHDIV) to fund 

the development of a robust radio repeater solution 

for use by currently-fielded robotic vehicles.  It was 

necessary to deliver this solution quickly; therefore, 

a simplified, albeit robust system based on APDS 

technology was developed under the Manually 

Deployed Communication Relays (MDCR) project.  

The MDCR system omits the RSSI monitoring and 

automatic-deployment capability of APDS, and 

instead relies entirely on remote commands sent 

from the OCU to deploy the Relays as the operator 

sees fit.  Although simple in design, the MDCR 

system has been successfully field tested with plans 

to mass produce additional units. 

Although RSSI-based link monitoring has been 

successful in the ADCR and APDS systems, it is not 

an ideal solution, as will be explained in section 3.  

Therefore, the goal of the LQ estimator outlined in 

this paper is to provide a superior estimation method 



 

that will assist the MDCR operator in placing relays, 

and to also provide a trigger to automatically eject 

relays for future ADCR systems. 

3 QUANTIFYING LINK 

In the MDCR system the Relays are deployed based 

on operator command.  Two factors play a role in 

the Relay deployment decision-making process of 

the operator: 1) prior knowledge of LOS loss – the 

operator knows that controlling the robot around a 

large obstruction will cause a loss of LOS so a Relay 

is deployed before proceeding, and 2) video 

degradation – as the distance between the robot and 

OCU increases, even under LOS conditions, the 

operator deploys a Relay when video quality 

degrades. 

Although these factors can be effective for 

deploying Relays, in order to maintain the link 

between the robot and the OCU, the operator for the 

most part is guessing as to where to place the Relays 

based on experience and intuition about the RF 

environment.  If the relaying system could provide 

an indicator based on some sort of LQ estimator that 

can warn of a failing link, however, the operator 

would be in a much better position to optimize Relay 

placement.  This is important since the number of 

Relays carried by a robot is limited and maximizing 

the distance between the Relays translates into 

maximizing the stand-off distance of the robot.  

Furthermore, the LQ estimator can be used by a 

relaying system (e.g., ADCR) to provide automatic 

Relay deployment capability, effectively alleviating 

the operator from the deployment task. 

It is also important to keep in mind that the link 

under consideration is between the robot and the 

next-hop neighbor of the routing path leading back 

to the OCU.  This is, in fact, the only dynamic link 

given that the only mobile node is the robot and all 

other nodes (OCU and previously deployed Relays) 

are static. 

3.1 Link Quality 

In this section a background on recent work on link 

quality is given, followed by sections that describe 

the proposed LQ metrics used by the LQ estimator. 

3.1.1 LQ Background 

A plethora of research on LQ estimation can be 

found in the literature.  Many schemes combine 

multiple variables available from the physical and 

link layers to form a more comprehensive and robust 

LQ metric.  Rondinone, Ansari, Riihijärvi, and 

Mähönen (2008) propose multiplying the Packet 

Reception Rate (PRR) of a link by the corresponding 

mean RSSI value to obtain a new LQ indicator that 

can be used by a network to select an optimal 

routing path.  Srinivasan, Kazandjieva, Jain, and 

Levis (2008) combine PRR and channel burstiness 

to estimate TCP throughput.  Liu and Cerpa (2011) 

combine RSSI, PRR, signal-to-noise ratio (SNR) 

and the Link Quality Indicator (LQI) provided by 

the CC2420 radio chip to provide a probability of 

successfully delivering the next packet. 

Yet combining variables is not the only 

approach.  Farkas, Hossmann, Ruf, and Plattner 

(2006) propose using pattern matching to predict the 

future behaviour of a link.  Each node keeps a time 

series record of the SNR with each of its links and 

uses pattern matching to find the best match in an 

attempt to estimate the future behaviour of the SNR.  

Qin, He, and Voigt (2011) develop a new LQ 

estimator, called the Spectrum Factor (SF), which is 

derived from frequency-domain data. 

3.1.2 LQ Data 

An LQ estimator can be used by a routing protocol 

in a mesh network to select optimal routing paths 

(Liu, Fan, Shu, Yu, 2010 and Liu and Cerpa, 2011).  

The goal of the LQ estimator for the MDCR system 

is somewhat different:  Develop an LQ estimator 

that is suitable in predicting link failure such that a 

Relay can be deployed before the link breaks. 

The LQ estimators discussed in the previous 

section are unsuitable for use given the stated goal.  

Rondinone et al. (2008) suggest multiplying the 

PRR of a link by the corresponding mean RSSI 

value to help in selecting routing paths.  Since there 

is only one link under consideration (between robot 

and next-hop neighbor along the routing path 

leading to the OCU), this multiplication provides no 

new information.  Srinivasan et al. (2008) attempt to 

estimate TCP throughput, which is unnecessary 

since the video data of the robot uses UDP packets 

and the throughput is readily available.  Liu et al. 

(2011) make use of SNR and LQI data that is 

unavailable in the 802.11 radios used in the MDCR 

system.  Farkas et al. (2006) use pattern matching to 

predict future behaviour of a link.  This requires 

some level of repetitive pattern to be present in the 

collected data, which is highly unlikely given the 

random movements of a teleoperated robot.  Finally, 

Qin et al. (2011) estimate LQ in the frequency 



 

domain, which requires raw RF data that is not 

easily obtainable from the MDCR radios. 

The data selected for the development of the 

proposed LQ estimator is UDP throughput (packets-

per-second) and RSSI, which are readily available 

and ease integration of the estimator into the existing 

mesh network software of the MDCR system.  The 

throughput data is also a direct indicator of video 

quality – one of the key factors in the deployment 

decision-making process of the operator.  Video 

quality, however, is subjective.  A slightly choppy 

video may be acceptable to one operator and 

unacceptable to another.  To quantify video quality, 

an experiment was devised where an operator 

controlled the robot along a predetermined path and 

when the video quality, as judged by the operator, 

began to degrade, the operator marked that point in 

time.  The marking method is simply a key press on 

a test laptop that collects throughput and RSSI data 

along with operator key presses, all synchronized in 

time.  There were two different key presses involved 

in this experiment: The #2 key was pressed when 

video quality began to degrade and the #3 key was 

pressed when the link was completely lost.  These 

two moments in time are tF (failing) and tL (lost), 

respectively.  The link-failure period (tLF) is simply 

tL – tF.  A sample of collected data and key presses is 

shown in Figure 3.  A simple moving average (MA) 

process is applied to all data to smooth out 

variations. 

 

Figure 3: Example of video throughput (blue) and RSSI 

data (green) received at the OCU from a PackBot using 

the MDCR system.  Solid line is the average (µ) of past 

five samples of underlying (dotted) data.  Left and right 

black lines represent tF and tL, respectively. 

Many such trial runs were performed under two 

different environments, one more prone to multipath 

than the other.  In all test trials, clear trends are 

observed in the throughput data during tLF, 

summarized as follows: 1) The throughput begins to 

roll off sometimes gradually and sometimes 

relatively sharp, and 2) the throughput variance 

increases.  The RSSI data, as expected, drops 

gradually overtime as the robot moves away from 

the OCU.  Before tF, however, the throughput data 

does not show any clear trend.  The test trials show 

that tLF varies between 10 to 20 seconds, which 

provides ample time to issue an alert.  These trends 

are exploited in the design of the LQ estimator. 

3.1.2 RSSI as Early Warning 

RSSI data has been proposed as a good link-quality 

metric by Srinivasan and Levis (2006) but the 

limitations of this statement must be understood.  It 

has been shown by Vlavianos, Law, Broustis, 

Krishnamurthy, and Faloutsos (2008) that RSSI data 

is measured at the lowest rate and cannot 

characterize the LQ at high transmission rates.  

Furthermore, RSSI is only measured from the packet 

preamble; therefore, if an interfering signal happens 

to prevent proper reception of the preamble, the 

RSSI will simply not be recorded.  If the interfering 

signal happens to corrupt the packet after the 

preamble has been received, then the RSSI will be 

recorded as if there is no interferer.  Hence, RSSI 

data is unchanged even in the presence of an 

interferer.  The work of Judd, Wang, and Steenkiste 

(2008) further supports this assessment. 

Broadband noise, however, is a concern.  If the 

overall noise floor is raised due to external 

broadband sources of noise, the overall SNR of 

received packets will decrease.  This means that 

RSSI data can only be measured down to the raised 

noise floor since packets received below the noise 

level will be corrupted.  Looking at Figure 3 it may 

seem reasonable to threshold the RSSI at about 10, 

below which the throughput data enters the region of 

degraded video quality, tLF.  This approach may 

work in the absence of broadband noise, but that 

constraint cannot be guaranteed when operating in a 

variety of environments. 

The goal of the proposed LQ estimator is to 

predict link failures so that a Relay can be deployed 

before the link breaks.  Preferably, some early 

warning should be given to the operator by the 

relaying system, followed by an imminent failure 

alert so that the operator can deploy a Relay before 

the link breaks.  Interfering signals are not a major 

concern given the operating environment, where the 

overwhelming reason for link failure is due to signal 

fading and loss of LOS.  Broadband noise, however, 

can exist.  Given the limitations of RSSI, it is then 
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reasonable to use it only as a conservative early 

warning system.  Figure 4 shows the mean RSSI 

value exactly at time tF, for all test trials.  There are 

clear variations but the overall range is low.  A 

conservative early warning of link failure can be 

issued, for example, if the mean RSSI drops below a 

threshold of 20.  Selecting a high threshold leaves 

quite a bit of margin should the noise floor increase 

due to broadband noise. 

 

Figure 4: Mean RSSI value at time tF for all test trials. 

3.1.3 Link Quality Metrics 

An accurate estimation of imminent link failure is 

required to alert the operator of complete loss of 

connectivity or trigger the deployment of a Relay 

from an automated deployment system.  Since RSSI 

data does not accurately reflect the ability of a link 

to successfully deliver packets as discussed in 

section 3.1.2, throughput data is used instead. 

The first trend of the throughput data is increased 

variance σ during tLF.  At the same time, the mean µ 

drops due to the second trend, the roll off.  Since the 

mean is high and variance low prior to tF and vice 

versa during tLF, it is reasonable then to use the ratio 

of the two as a metric.  This is inspired from the 

Ricean K-factor (Greenstein, Michelson, and Erceg, 

1999), which is used as a measure of signal fading.  

The ratio here is given as κ = µ/σ and is the first LQ 

metric, LQMκ. 

The second trend is the roll off.  This is measured 

by first taking N samples of throughput data then 

calculating its intercept (x1) and slope (x2) using 

linear regression.  The assumption is that the N-

sample-long data is a straight line.  Using a sliding 

window, x1 and x2 are updated for each new sample.  

The vector x = [x1 x2] is the second LQ metric, 

LQMx. 

The trade-off between the false-alarm rate and 

the miss rate is dependent on N.  Low false-alarm 

and low miss rates are desired.  By setting N too 

high, the data will be too smooth and the LQ 

estimator slow to respond.  This has the effect of 

reducing the false-alarm rate due to reduced noise, 

but increases the miss rate due to reduced response 

time.  In effect, the link is lost before the LQ 

estimator has a chance to issue an alert.  On the 

other hand, setting N too low causes the data to be 

too noisy, increasing the false-alarm rate, but 

reducing the miss rate due to increased response 

time.  Since the cost of failing to issue an alert (a 

miss) is much greater than alerting too soon (a false 

alarm), the selection is biased towards reducing the 

miss-rate by choosing N = 5. 

3.1.4 Classifier 

The keystrokes of the operator during the test trials 

essentially label the collected data that are used to 

train the LQ estimator.  Half of the collected data is 

used as training data and the other half as test data.  

A labelling problem can be solved by classifiers.  

Supervised training is used by two classifiers, one 

for LQMκ and the other for LQMx.  Each classifier 

finds the optimal decision boundary between two 

different sets of labelled data: those marked before tF 

(signal OK) and those marked during tLF (signal 

failing).  The hypothesis function for LQMκ is given 

by zκ(θθθθκ) = θ0 + θ1κ and for LQMx the hypothesis 

function is zx(θθθθx) = θ0 + θ1x1 + θ2x2.  Both are 

modelled as linear functions, which is a reasonable 

assumption when looking at the data clusters in 

Figures 5 and 6.  The optimal parameter vector θθθθ is 

found by the classifier, which defines the decision 

boundary that has values z(θθθθ) ≥ 0 on one side and 

z(θθθθ) < 0 on the other. 

The plot of the labelled κ values for all test trials 

is shown in Figure 5.  The plot of labelled x1 and x2 

values for all test trials is shown in Figure 6.  The 

green circles represent values that take place before 

tF and the red asterisks are data that take place 

during tLF.  Using logistic regression, an optimal 

decision boundary is generated, shown as the blue 

line.  All green circles above the line are hits (link 

OK) and those below the line are false alarms (link 

failing when in fact it is not).  All red asterisks 

below the line are hits (link failing) and those above 

the line are misses (link failing but no alert issued).   

It is clear from both figures that there is overlap 

between the labelled data.  Given the high cost of 

misses, the decision boundary is biased so as to 

reduce the number of misses. 
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Figure 5: Plot of labelled κ and decision boundary.  Its log 

is taken to improve computation of the boundary. 

 

Figure 6: Plot of x1 vs. x2.  Both variables have been 

scaled to reduce their range for improved computation of 

the decision boundary. 

Figure 6 supports the roll-off trend of the 

throughput data.  Looking at Figure 3, the flat part of 

the throughput data roughly corresponds to 40 

packets-per-second and since it is flat its slope is 

about zero.  This correlates to the green cluster seen 

in Figure 6.  As the throughput begins to fail during 

tLF, the packet rate drops, which corresponding to the 

reduced x1 (intercept) values.  At the same time the 

slope increases in the negative direction.  This 

corresponds to the red cluster in Figure 6.  The 

positive x2 values are due to the variance of the 

throughput data during tLF that can cause the slope to 

go positive momentarily.  Notice, however, very few 

occurrences of positive slope and high intercept 

values take place.  The occurrences of high intercept 

and high negative slope can be explained by sharp 

roll-offs, where the throughput value is still 

somewhat high but the slope is steep. 

3.1.5 Link-Quality Estimator 

The goal of the LQ estimator is to provide an early 

warning of link failure (based on RSSI data) and a 

more accurate imminent link-failure alert (based on 

LQ metrics calculated from throughput data).  These 

metrics are somewhat noisy due to the selection of N 

chosen to increase responsiveness (reduced miss 

rate), and hence, sensitivity (increased false-alarm 

rate).  Each metric alone is not sufficient to provide 

an accurate estimation, therefore they are combined.  

The manner in which they are combined is 

essentially an AND operation between the 

hypothesis functions.  This implies that both 

hypothesis functions zκ(θθθθκ) and zx(θθθθx) must agree 

that the link is failing, which occurs when both 

zκ(θθθθκ) and zx(θθθθx) are less than zero.  Furthermore, the 

LQ estimator does not issue an alert unless both 

zκ(θθθθκ) and zx(θθθθx) are less than zero for three 

consecutive samples in a row.  This eliminates 

momentary glitches where both hypothesis functions 

are below zero.  Finally, the LQ estimator does not 

start calculating the imminent link-failure alert until 

a warning is issued when the mean RSSI data falls 

below a conservative threshold.  A simplified flow 

chart for the LQ estimator is shown in Figure 7. 

 

 

Figure 7: Simplified flow chart for the LQ estimator. 

The flow chart does not show the additional steps 

taken to deactivate the warning and alert indicators.  

For example, instead of using a single threshold, 

hysteresis can be added to the mean RSSI data 

where falling below the lower threshold (e.g., robot 

moving away from OCU) causes a warning to be 

issued, which is removed when the mean RSSI 

moves above the upper threshold (e.g., robot moving 

back towards OCU).  In a somewhat similar manner 

the link-failure alert indicator can be removed.  For 

example, an issued alert can be removed if both 

0 50 100 150 200 250 300
-1

-0.5

0

0.5

1

1.5

2

2.5
lo

g
1

0
(κ

)

 

 
t
κ
 < t

F

t
F
 ≤ t

κ
 < t

L

Decision boundary

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-4

-3

-2

-1

0

1

2

3

4

Intercept (x
1
)

S
lo

p
e
 (

x
2
)

 

 
t
x2

,t
x1

 < t
F

t
F
 ≤ t

x2
,t

x1
 < t

L

Decision boundary



 

hypothesis functions agree that the signal is good, 

say for five consecutive samples. 

Figure 8 shows a sample of a test trial.  The plot 

shows that a warning is issued when the mean RSSI 

falls below 21 (hysteresis enabled).  Once the 

warning has been issued, the LQ estimator begins 

calculating the LQ metrics and testing the hypothesis 

functions zκ(θθθθκ) and zx(θθθθx).  A value of less than zero 

indicates a hit, which is shown on the plot as a red 

box for LQMκ and a red diamond for LQMx.  A link-

failure is indicated as a red ‘+’ sign when both 

functions are less than zero at the same time 

(LQMAND).  An occurrence of this takes place at 

time 190 but no alert is issued.  The LQ estimator 

issues an alert when it observes three consecutive 

link-failure hits at time tA = 202.  This occurs just 

after tF = 200, with plenty of time still left before the 

link is completely lost at time tL = 213. 

 

Figure 8: LQ estimator warning and alert.  A warning is 

issued based on RSSI and an alert based on throughput. 

4 SIMULATION RESULTS 

The LQ estimator will occasionally issue an alert 

prior to tF due to the overlap in the training data as 

shown in Figures 5 and 6.  This is a desirable effect 

because the alert is issued just before video 

degradation begins.  An alert issued after tF is also 

acceptable so long as the alert does not take place 

too close to tL, which may not provide enough time 

to deploy a Relay before the link breaks.  Therefore, 

the accuracy of the LQ estimator is defined as the 

percentage of alerts issued within a specified 

window of time tw centered on tF for all test data.  

The window tw is defined as tF ± ∆t.  The value ∆t is 

equal to βtLF where 0 < β ≤ 1. This ensures that ∆t is 

no greater than tLF.  The selection of β is somewhat 

arbitrary.  The smaller it is, the closer the alert issue-

time tA must be to tF before the alert is counted as an 

accurate hit.  Table 1 shows the accuracy result for 

different values of β. 

Table 1: LQ estimator accuracy 

β Hit % False Alarm % Miss % 

1/2 73 9 18 

2/3 82 9 9 

3/4 91 0 9 

1 100 0 0 

 

Table 1 shows that with β = 1 all alerts are issued 

within tF ± tLF, and 73% of alerts are issued within tF 

± tLF/2 with β = 1/2. 

5 CONCLUSION 

A link-quality (LQ) estimator is developed to 

provide an accurate means of estimating an 

imminent link failure, which is required to assist the 

operator of a tactical mobile robot in deploying a 

Relay before the link breaks.  Since the robot carries 

a limited number of Relays, increasing the distance 

between deployment locations will increase the 

operational range of the robot.  The same LQ 

estimator can also be used on an automatic Relay 

deployment mechanism (such as the ADCR system) 

as a trigger to eject a Relay. 

The LQ estimator is based on LQ metrics 

calculated from labelled throughput data.  The 

throughput data is labelled during test trials by the 

robot operator, who marks the data when the video 

quality begins to degrade and finally lost altogether.  

This process is repeated for several trial runs in two 

different operating environments. The labelled data 

is used to train the LQ estimator, which is then 

applied to test data that is not used in the training 

session.  The LQ estimator issues two alerts: 1) a 

warning alert to the operator based on RSSI data, 

which serves as a conservative estimate of a link 

beginning to fail, and 2) a much more accurate link-

failure alert based on throughput data when an 

imminent link failure is detected.  The results from 

the test data show that the LQ estimator achieves 

high accuracy in issuing an alert before the link is 

completely lost. 

 

100 120 140 160 180 200 220
0

10

20

30

40

50

60

70

T
h
ro

u
g
h
p

u
t 

(p
a
c
k
e
ts

 p
e

r 
s
e
c
o
n

d
)

Time (sec)

 

 

100 120 140 160 180 200 220
0

5

10

15

20

25

30

35
R

S
S

I

Warning

Alert

Throughput

RSSI

LQM
x

LQM
κ

LQM
AND



 

REFERENCES 

Farkas, K., Hossmann, T., Ruf, L., Plattner, B., 2006.  

Pattern Matching Based Link Quality Prediction in 

Wireless Mobile Ad Hoc Networks.  MSWiM’06. 

Greenstein, L. J., Michelson, D. G., Erceg, V., 1999.  

Moment-Method Estimation of the Ricean K-Factor.  

IEEE Communications Letter, 175-176. 

Judd, G., Wang, X., Steenkiste, P. 2008.  Efficient 

Channel-Aware Rate Adaptation in Dynamic 

Environments.  MobiSys’08. 

Liu, T., Cerpa, A.E., 2011.  Foresee (4C): Wireless Link 

Prediction using Link Features.  10th International 

Conference on Information Processing in Sensor 

Networks, 294-305. 

Liu, L., Fan, Y., Shu, J., Yu, K., 2010.  A Link Quality 

Prediction Mechanism for WSNs Based on Time 

Series Model.  Ubiquitous Intelligence & Computing 

and 7th International Conference on Autonomic & 

Trusted Computing, 175-179. 

Nguyen, H. G., Pezeshkian, N., Raymond, M., Gupta, A., 

Spector J. M., 2003.  Autonomous Communication 

Relays for Tactical Robots.  11th International 

Conference on Advanced Robotics, 35-40. 

Pezeshkian, N., Nguyen, H. G., Burmeister, A., 2007.  

Unmanned Ground Vehicle Radio Relay Deployment 

System for Non-Line-of-Sight Operations.  13th 

International Conference on Robotics & Applications. 

Pezeshkian, N., Nguyen, H. G., Burmeister, A., Holz, K., 

Hart, A., 2010.  A Modular Design Approach for the 

Automatic Payload Deployment System, Association 

for Unmanned Vehicle Systems International. 

Qin, Y., He, Z., Voigt, T., 2011.  Towards Accurate and 

Agile Link Quality Estimation in Wireless Sensor 

Networks.  Ad Hoc Networking Workshop, 2011 the 

10th IFIP Annual Mediterranean, 179-185. 

Rondinone, M., Ansari, J., Riihijärvi, J., Mähönen, P., 

2008.  Designing a Reliable and Stable Link Quality 

Metric for Wireless Seonsor Networks. REALWSN’08. 

Srinivasan, K., Kazandjieva, M.A., Jain, M., Levis, P. 

2008.  PRR Is Not Enough. 

Srinivasan, K., Levis, P., 2006.  RSSI Is Under 

Appreciated.  Third Workshop on Embedded 

Networked Sensors. 

Vlavianos, A., Law, L.K., Broustis, I., Krishnamurthy, 

S.V., Faloutsos, M., 2008.  Assessing Link Quality in 

IEEE 802.11 Wireless Networks: Which is the Right 

Metric?  IEEE 19th International Symposium on 

Personal, Indoor and Mobile Radio Communications, 

1-6. 




