
Tip-over Prevention: Adaptive Control Development
Leah Kelley

Massachusetts Institute of Technology
Cambridge, MA 02139

Email: lckelley@mit.edu

Kurt Talke, Patrick Longhini and Garret Catron

SSC Pacific, Unmanned Systems Branch
San Diego, CA 92110

Email: {kurt.talke, patrick.longhini,
garret.catron}@navy.mil

Abstract—Skid-steered, tracked, teleoperated robots are used
to perform high-risk critical missions such as bomb disposal
under conditions deemed too risky to send a human. Tracked
robots work well on structured surfaces such as asphalt roads,
but not as well in unstructured environments, including collapsed
buildings or on rough terrain covered with sand, brush, rocks
and debris. Often the robots carry heavy payloads that raise
their centers of mass, increasing their risk of tipping over. Since
it is often not feasible to send a human to right a toppled robot,
tip-over is equivalent to mission failure. Hence, an autonomous
behavior to prevent robot tip-over is desired. In this research, a
tipover prevention behavior is developed.

I. INTRODUCTION

Military and civilian crews use skidsteered teleoperated
robots to perform dangerous missions, such as bomb disposal.
Missions are often conducted in harsh environments, such as
inside collapsed buildings or on irregular terrain covered with a
variety of media, including sand, brush, mud, rocks and debris.
Should a robot stop functioning during its mission, it may be
too risky to send a human operator to repair it. In such cases,
robot malfunction is equivalent to mission failure.

One common malfunction leading to mission failure is robot
tip-over. Tracked robots used for bomb disposal have been
shown to work well on flat structured terrain such as asphalt
roads, but are at high risk of tip-over when operated on
rough or inclined surfaces [1]. The risk of tip-over increases
when they carry heavy payloads that raise their centers of
mass. Although some robots may have manipulator arms
and/or flippers that provide some self-righting capabilities,
many others are not so equipped. Further complicating the
scenario, a remote operator driving a robot may believe it is on
flat ground when looking at its on-board camera feed, when
in reality the robot is on an inclined surface near tip-over.
Hence, an autonomous tip-over prevention behavior, capable of
operating during both autonomous and tele-operated missions
is needed to mitigate these concerns.

A. Tip-Over Detection

Several methods have been developed to quantify the stabil-
ity of mobile robots, including the Zero-Moment Point (ZMP),
Force-Angle (FA) and Moment-Height Stability (MHS) sta-
bility measures [2]–[7]. Experimental studies have been per-
formed to determine whether the ZMP, FA and MHS metrics
can be used to detect real-world tip-over conditions [2]. The

studies showed that all metrics can be used to detect tip-
over, with the FA and MHS metrics providing more effective
stability measurements than the ZMP metric, in some cases
indicating tip-over 3 microseconds prior. In follow-up work,
the FA metric was selected for use in a tip-over detection
algorithm [8].

The FA stability measure approach determines stability
based on the angle of the vector sum of all non-supporting
forces applied at the robot’s center of mass [6]. The force
angle is the minimum angle formed between the force-vector
sum and a set of vectors pointing from the robot’s center of
mass to the edges of the convex support polygon formed by
the robot’s ground contact points, as shown in Figure 1. If the

Fig. 1. Tip-over angle definition in Force-Angle stability measure

line the force vector sum follows intersects the ground close
to the edges of the support polygon but within its area, the
angle between the force and edge vectors is small, and the
robot is in danger of tip-over. If the force vector intersects an
edge of the support polygon, the angle is zero and the robot
is about to tip-over. If the force vector intersects the ground
outside the support polygon, the minimum angle is less than
zero and the robot has already tipped over. In Figure 1, the
force vector points outside the support polygon, indicating the
robot has tipped over.

B. Robot and Vehicle Stabilization
Mobile robot stability control has been well-studied [4], [5],

[9]–[20]. Roll stabilization has been achieved by controlling
the steering angle, adding controllable anti-roll torsion bars,
controlled braking and velocity limiting. Path planning algo-
rithms exclude tip-over states from their feasible trajectories,

IEEE International Conference on Robotics and Automation (ICRA), Seatle, WA, 26-30 May, 2015

though they require predefined waypoints and require a priori
knowledge of the terrain. Mobile manipulators, rocker-bogie
vehicles and robots with flippers can be stabilized by adjusting
their centers of mass. Such methods are not applicable to tele-
operated, non-reconfigurable robots [21]. Research on stabi-
lization control of such robots assumes they ascend inclines at
the angle of steepest ascent, thus reducing the problem to two
dimensions. They also ignore terrain roughness and variation.

C. Tip-over Prevention Approaches for Tracked Vehicles

In this research, two approaches to tip-over prevention for
skid-steered vehicles with no ability to change their centers
of mass were pursued. A heuristically developed tip-over
detection behavior, using the FA measure has been imple-
mented and tested on two tele-operated mobile platforms
[8]. This paper presents a model-based feedback controller,
where a mathematical model of the dynamics of skid-steered
robots is developed. The dynamic model includes robot-terrain
specific interactions, such as ground-vehicle contact friction,
that change as the terrain changes and cannot be predicted.
Hence, adaptive control techniques are used to design the
controllers. Because the FA measure indicates which edge
of the support polygon a tip-over is likely to occur, pitch
and roll can be controlled separately. Here, Model-Reference
Adaptive Control (MRAC) is used for pitch and adaptive back-
stepping control is used for roll. The two controllers were
implemented and tested on an iRobot Packbot and a Segway
RMP 440. Experimental results show that the controllers are
able to stabilize the robot under a variety of conditions.

II. PHYSICAL MODELING

Understanding a system’s dynamic behavior helps determine
an appropriate control strategy. The mathematical model of a
skid-steered mobile robot is presented below.

A. Skid-Steered Robot Dynamics

First principles are applied to describe the motion of a
ground robot in body-centric coordinates. Consider a free-body
diagram skid-steered mobile robot on an arbitrary incline, as
shown schematically in Fig. 2. Newton’s laws expressed in
vector form in the body frame are [22]:

m [˙̄v + ω̄ × v̄ + ˙̄ω × r̄g + ω̄ × (ω̄ × r̄g)] = F̄ (1)

J ˙̄ω + ω̄ × (Jω̄) +mr̄g × (˙̄v + ω̄ × v̄) = τ̄ (2)

where m is the mass of the body, ˙̄v is a vector of linear
accelerations in the body frame, ˙̄ω is a vector of angular
accelerations of the body frame, v̄ is a vector of linear
velocities in the body frame, ω̄ is a vector of angular velocities
in the body frame, r̄g is the location of the center of mass with
respect to the origin of the body frame and can be expanded
as [rxryrz]

T , J is a 3x3 matrix of inertias, F̄ are the external
forces acting on the body, and τ̄ are the external moments
acting on the body.

1) Friction Modeling: Experimental data was used to es-
timate coefficients for the Coulomb friction model which
consistently resulted in positive friction coefficients. A signum
function is used to ensure that friction always acts in oppo-
sition to the robot motion. The frictional forces act at the
robot/ground surface, and are:

Ff =

 − sgn(vx)mgµ1 cos(θ) cos(φ)
− sgn(vy)mgµ2 cos(θ) cos(φ)

0

 (3)

where µ1 and µ2 are the Coulomb friction coefficients.
Though the frictional forces act at the robot/ground inter-

face, they cannot be assumed to be equally divided along
the track lengths. For simplicity, the frictional force vector is
assumed to act at a point on the robot/ground surface directly
below the robot center of mass.

Fig. 2. Free body diagram of a skid-steered robot

2) Impact Forces: When the robot traverses rough terrain,
it experiences impacts that cause vertical displacement and
moments about the x and y axes as shown in Figure 2.

For simplicity, it is assumed that the net impact force, F̄I ,
acts below the center of mass on the robot/ground interface,
and the moments M̄I caused by impact are defined as:

F̄I =

 0
0
fI,z

 , M̄I = r̄g × F̄I =

 ryfI,z
−rxfI,z

0

 (4)

3) Actuator Forces: The tracked, skid-steered robot under
consideration has two driving motors, one at each front
sprocket, as shown in Figure 2. The following system inputs
are defined from the actuator forces:

u1 = τr + τl, u2 = −d3τr − d4τl (5)

where τr is the torque applied by the right driving motor on
the right sprocket, τl is the torque applied by the left driving
motor on the left sprocket, and d3 is the lateral distance from
the center of mass to the right sprocket, and d4 is the lateral
distance from the center of mass to the left sprocket. Note that
d3 is negative since it is to the right of the center of mass.
Also shown is rw, the radius of the drive sprocket.

4) Constraints and Simplified Equations of Motion: The
robot is assumed constrained to the ground surface, so that

vz = 0, v̇z = 0 (6)

Therefore, the sum of the inertial, centripetal, Coriolis, and
gravitational terms can be used to estimate the impact forces:

fI,z = ω̇xry − ω̇yrx − ωyvx + ωxvy − ω2
xrz − ω2

yrz
+ ωxωzrx + ωyωzry + g cos(θ) cos(φ)

The equations of motion under the assumed constraints are
thus

v̇x = −ω̇yrz + ω̇zry + ωzvy − ωyωxry − ωzωxrz
+ ω2

yrx + ω2
zrx + g sin(θ)

− sgn(vx)gµ1 cos(θ) cos(φ) + 1
mrw

u1

v̇y = ω̇xrz − ω̇zrx − ωzvx + ω2
xry − ωxωyrx

− ωzωyrz + ω2
zry − g cos(θ) sin(φ)

− sgn(vy)gµ2 cos(θ) cos(φ)

ω̇x = 1
Jx

[mv̇yrz +mωyvxry +mωzvxrz −mωxvyry
− Jzωzωy + Jyωyωz −mgry cos(θ) cos(φ)
+mgrz cos(θ) sin(φ)− sgn(vy)mghµ2 cos(θ) cos(φ)
+ ryfI,z]

ω̇y = 1
Jy

[−mv̇xrz −mωyvxrx +mωxvyrx +mωzvyrzr

+ Jzωzωx − Jxωxωz +mgrz sin(θ)
+mgrx cos(θ) cos(φ) + sgn(vx)mghµ1 cos(θ) cos(φ)

− rxfI,z + rw−(h+rz)
rw

u1]

ω̇z = 1
Jz

[mv̇xry −mv̇yrx −mωzvxrx −mωzvyry
− Jyωyωx + Jxωxωy −mgrx cos(θ) sin(φ)
−mgry sin(θ)− sgn(vy)rxmgµ2 cos(θ) cos(φ)
+ sgn(vx)rymgµ1 cos(θ) cos(φ) + 1

2rw
u2]

(7)

III. ADAPTIVE CONTROL DESIGN

As the robot travels over different terrains, the friction
interaction between the tracks and the ground changes, so the
robot stabilization controller needs to adapt to these changes.
The dynamic model is parameterized such that the unknown,
time-varying friction coefficients are linear with respect to
measurable states, hence, adaptive control can be used.

The tip-over detection algorithm provides the likelihood
and direction the robot is most likely to tip-over as shown
in Section I-A. Thus, the angle to stabilize can be chosen
based on that direction, allowing pitch and roll to be controlled
separately rather than attempting to stabilize both at once.

A. Pitch Controller Design

A state-accessible Model-Referenced Adaptive Controller
[23] is developed to control the pitch velocity, shown in Fig.
3. The pitch angle φ is directly affected by the control input
u1, or the sum of the right and left torques, as is seen in Eqn.
(7). The forward accelerations and angular velocities can be
measured from the IMU data, and the forward velocity can be

measured from the wheel encoder data. Assuming a no-slip
condition, the lateral velocity can be estimated from the yaw
velocity using:

vy = rxψ̇imu (8)

where ψ̇imu is the measured yaw velocity from the IMU
sensors.

Fig. 3. Pitch controller block diagram

The angular acceleration for pitch can be written as:

ω̇y = f1,p + µ1f2,p + bu1 (9)

where

f1,p = 1
Jy

[−mrz v̇x −mωyrxvx +mωxrxvy +mωzrzvy
+ (Jz − Jx)ωzωx +mgrz sin(θ)
+mgrx cos(θ) cos(φ)− fI,zrx]

(10)

f2,p =
sgn(vx)mgh cos(θ) cos(φ)

Jy
(11)

b =
rw − (h+ rz)

Jyrw
(12)

The Coulomb friction coefficient is µ1, assumed to be quasi-
constant but unknown. The controller is designed so that the
pitch velocity follows a stable first-order reference model, as
in [23]:

ω̇y,m = −amωy,m + br (13)

where am is positive and r is the reference signal. The
parameter estimate âf and parameter estimate error ãf are
defined:

âf =
µ̂1

b
, ãf = âf −

µ1

b
(14)

where µ̂1 is the estimate of the Coulomb friction coefficient.
The control and adaptive laws are defined as:

u1 = −am
b
ωy −

1

b
f1,p − âff2,p + r (15)

˙̂af = ˙̃af = bef2,p (16)

and the error e as:

e = ωy − ωy,m (17)

Since µ1 is assumed constant ˙̃af = ˙̂af . Under the above con-
trol and adaptation laws, the closed loop and error dynamics
become:

ω̇y,CL = −amωy,CL − (bâf − µ1)f2,p + br (18)

ė = −ame− bãff2,p (19)

Consider a Lyapunov candidate function and its derivative:

V =
e2

2
+
ã2f
2

(20)

V̇ = eė+ ãf ˙̃af (21)

Substituting Eqns. (16) and (19) into Eqn. (21) yields:

V̇ = e [−ame− bãff2,p] + ãf [bef2,p] = −ame2 ≤ 0 (22)

which is negative semi-definite, since am is positive. The
candidate Lyapunov function Eqn. (20) is positive definite. For
stability, all signals must be bounded, and the error between
the actual and reference states must tend to zero. Since Eqn.
(22) is negative semi-definite and Eqn. (20) is positive definite,
then

V (e (t) , ãf (t)) < V (e (0) , ãf (0)) <∞ (23)

Thus V is bounded and e and ãf are bounded. The reference
model used for the pitch controller is stable, since the reference
signal r is bounded by design, as discussed later in Section
III-C, e is bounded, and −am is negative. Therefore, the
reference velocity ωy,m is bounded, and, in turn, the actual
pitch velocity ωy is bounded. While the controller is active, it
is assumed that the parameter µ1 is constant, so âf is bounded
since ãf is bounded. Finally, ė is bounded since in Eqn. (19),
e and ãf are bounded, b is a constant and the limits on f2,p are
|f | ≤ mgh

Jy
. Using Barbalet’s Lemma as presented by Corollary

2.9 in [23] it can be shown that the error e tends to zero.

B. Roll Controller Design

Unlike pitch, roll is not directly affected by actuating the
drive motors, as seen in Eqn. (7). However, roll is affected
by both the forward and yaw velocities, which are directly
affected by the actuators u1 and u2, respectively. Therefore,
an adaptive back-stepping approach in which the yaw velocity
ψ̇ is used as a control input to the roll controller is used, as
shown in Fig. 4. The yaw velocity is controlled by the differ-
ence between the two torques, u2. The adaptive backstepping
approach uses stabilization and tuning functions to avoid over-
parameterization, as described in [24].

Fig. 4. Roll controller adaptive back-stepping block diagram

The roll dynamics from Eqn. (7) can be written in the form

ω̇x = f1,r + f2,rωx +Brωz + µ2g1 (24)

where

f1,r = 1
Jx

[mrz v̇y +mryωyvx +mgrz cos(θ) sin(φ)

− mgry cos(θ) cos(φ) + fI,zry]
(25)

f2,r =
−mrrvy
Jx

, g1 =
−mgh sgn(vy) cos(θ) cos(φ)

Jx
(26)

Br =
mrzvx − Jzωy + Jyωy

Jx
(27)

From Eqns. (24) and (27) the parameter Br is known
explicitly, but can at times take on a zero value. When this
occurs, the yaw velocity will have no effect on the roll velocity.
Thus, the roll controller will only be activated under the
condition

|Br| ≥ δ > 0. (28)

In the instances where roll stability is needed but the above
condition is not satisfied, the robot can be commanded to
use one of the heuristic behaviors, such as turn-to, or can
be commanded to turn so pitch must be stabilized instead [8].

From Eqn. (7), the yaw dynamics can be written in the form

ω̇z = kru2 + f3,r + f4,rωz + µ2g2 + µ1g3 (29)

where

f3,r = 1
Jz

[mv̇xry −mv̇yrx − Jyωyωx + Jxωxωy
−mgrx cos(θ) sin(φ)−mgry sin(θ)]

(30)

f4,r =
−mvxrx −mvyry

Jz
, kr =

1

2rwJz
(31)

g2 =
−rxmg sgn(vy) cos(θ) cos(φ)

Jz
(32)

g3 =
rymg sgn(vx) cos(θ) cos(φ)

Jz
(33)

To design the adaptive backstepping controller, the follow-
ing set of error coordinates are defined:

z1 = ωx − ωx,d, z2 = ωz − α−
ω̇x,d
Br

(34)

where α is a stabilizing function. Assuming that Br is constant
during the updates, the derivatives of the error coordinates are

ż1 = ω̇x − ω̇x,d, ż2 = ω̇z − α̇−
ω̈x,d
Br

(35)

The control and adaptive laws are derived using Lyapunov-
stability analysis. Presentation of the complete derivation is
beyond the scope of this paper. The control laws and stability
are presented here. The roll control law is defined as

u2 = 1
kr

[−µ̂2g2 − µ̂1g3 − c2z2 −Brz1 − f3,r
− f4,rz2 − f4,rα− f4,rω̇x,d

Br
+

c21z1
Br
− c1z2

− ω̇xf2,r
Br

− ˙̂µ2g1
Br

+
ω̈x,d

Br
]

where c1 and c2 are positive constants. The stabilizing function
α is defined as

α =
−f1,r
Br

+
−f2,r
Br

ωx +
−µ̂2

Br
g1 +

−c1ż1
Br

(36)

Its derivative is

α̇ =
−c1ω̇x
Br

+
c1ω̇x,d
Br

+
−ω̇xf2,r
Br

+
− ˙̂µ2g1
Br

(37)

The adaption laws for ˙̂µ1 and ˙̂µ2 are

˙̂µ1 = g3z2, ˙̂µ2 = τ1 + z2

[
g2 +

g1c1
Br

]
(38)

where the tuning function τ1 = z1g1.
It is also assumed that the friction coefficients µ1 and µ2

are constant while the controller is active. Therefore,

˙̃µ1 = ˙̂µ1, and ˙̃µ2 = ˙̂µ2. (39)

Consider a Lyapunov candidate function

V =
z21
2

+
z22
2

+
µ̃2
2

2
+
µ̃2
1

2
(40)

and its derivative

V̇ = z1ż1 + z2ż2 + µ̃2
˙̃µ2 + µ̃1

˙̃µ1 (41)

The closed loop error dynamics for z1 and z2 are

ż1 = −c1z1 +Brz2 − µ̃2g1 (42)

ż2 = −c2z2 −Brz1 −
[
g2 +

c1g1
Br

]
µ̃2 − g3µ̃1 (43)

Substituting the closed loop error dynamics and the adaption
laws into Eqn. (41) yields

V̇ = −c1z21 − c2z22 (44)

Since c1 and c2 are positive constants, Eqn. (44) is negative
semi-defininte and Eqn. (40) is positive definite. Thus, V , z1,
z2, µ̃1 and µ̃2 are bounded. It can be shown, that the controller
is stable under the constraints assumed in this paper.

C. Reference Trajectory Generation

For stabilization, the robot should be commanded to rotate
opposite its tipping direction. Accurate parameter estimation is
not needed for pitch control, so a step in pitch angle opposite
the tipping direction is commanded when the pitch controller is
activated by r = −sgn(θimu,0)k2, where θimu,0 is the pitch
angle recorded at the time the pitch controller is activated
and k2 is a user-defined constant. This signal need not be
differentiable.

The adaptive backstepping roll controller requires a twice
differentiable signal, since ωx,d, ω̇x,d and ω̈x,d are all required.
A sinusoid is a good reference signal candidate since it is
infinitely differentiable.

IV. EXPERIMENTAL VALIDATION

The adaptive roll and pitch controllers, or advanced control,
were implemented on both an iRobot Packbot and a Segway
RMP 440, each equipped with a custom payload. The payload
contains a processor that runs the tip-over detection and
prevention algorithms, GPS, Ethernet for wireless communi-
cation, and a MicroStrain 3Dm-GX3 inertial measurement unit
(IMU). The data from the IMU sensor include pitch, roll, yaw,
pitch speed, roll speed, yaw speed and accelerations in (x, y, z)
in the robot body frame. The controllers were tested by driving
the robots on rough terrain such as sand, coarse rock, dry
brush and dirt. Both robots were driven uphill forwards and
backwards, downhill, and along inclined surfaces. Experiments
were also conducted using the Packbot with an additional
payload consisting of a raised platform with a 20-pound weight
to elevate the center of mass and determine how well the
advanced control works with a less-stable platform.

The advanced control exhibited positive results, providing
the user with a fast, automatic reactive behavior on the order
of tenths of a second, much faster than human reaction time
for correcting an unstable robot. Often, the controller activates
before the user can realize that the robot was in danger of tip-
over. When the controller is active for longer periods of time,
the user does not lose control of the robot to the controller
behavior. Rather, the controller shares control with the operator
and redirects the robot to a safer path, based on its current
state. This is an improvement over the heuristically developed
behaviors presented in [8], since here the user still maintains
some control.

A. Pitch Control Experiments

Fig. 5. RMP440 Advanced Control: (top) displays vehicle pitch and roll;
(bottom) normalized tip-over measure. Threshold for tip-over warning set to
0.38.

1) Segway RMP 440: Figure 5 demonstrates the advanced
control active on the Segway RMP440. The normalized mea-
sures displays the tip-over parameter normalized between 0
and 1, where 0 is stable and 1 is unstable or in the tipped
over state. From 0 to 155 seconds the advanced control made
corrections to avoid tip-over. At 155 seconds, the first attempt
up the hill, the RMP440 did not tip-over, with the pitch

controller activating. However, the next two attempts ended
in a tip-over, likely a result of the activation threshold being
set too high.

Fig. 6. Packbot Advance Control: (top) displays vehicle pitch and roll;
(bottom) normalized tip-over measure. Threshold for tip-over warning set to
0.38.

2) iRobot Packbot: Raised Center of Mass: In order to
better evaluate the advanced control, a weighted mass, or
”dummy” payload was attached to the Packbot to raise the
center of mass. As shown when the advanced control is active
in Figure 6, if the normalized measure crosses the threshold
tip-over threshold, the controller will make the appropriate
correction to mitigate the instability as seen at 33, 41, and 43
seconds.

B. Roll Control Experiments

Similar to the pitch controller results in Section IV-A. The
roll control experiments demonstrated that Segway RMP440
and iRobot Packbot made the appropriate corrections to avoid
tip-over. Figure 7 shows sequences of clips taken from a
typical situation displaying first the roll control activating,
correcting the roll instability, followed by the pitch controller
activating, bringing the vehicle to a safe, stable position.

Fig. 7. Advance Controller: Pitch and Roll activatation sequence

C. Advance Control Off

For comparison purposes, results without any controller are
shown in Figure 8. The shaded regions correspond to when
the normalized tip-over measure crosses the threshold and the
behavior for preventing tip-over would have activated. As seen

between 65 and 86 seconds, the Packbot does not tip-over
during the first couple times above the threshold. However,
at 90 seconds, a tip-over occurs. Comparing to when the
advanced controller was active as was shown in Figure 6,
the advanced controller prevents tip-over when the tip-over
measure rises above the threshold value.

Fig. 8. Adaptive control turned off for the Packbot. The shaded regions show
where the behavior would have been active to prevent tip-over.

V. CONCLUSION

Tip-over presents a significant risk for autonomous and tele-
operated unmanned ground vehicles. Using a first-principles-
based physics model, an advanced controller enabling both a
state accessible Model Referenced Adaptive Control approach
for pitch control and an adaptive back-stepping approach
for roll control was designed, mathematically proven, and
experimentally validated. Testing results on the iRobot Packbot
and the Segway RMP440 showed promise for the controller
to successfully deter tip-over scenarios. The adaptive model-
based controller can mitigate many of the issues seen with
system-ID-based controllers, and provide a viable means to
successfully avert tip-over and mission failure.

ACKNOWLEDGMENT

The authors would like to acknowledge the Joint Ground
Robotics Enterprise (JGRE) for providing multi-year funding
for this effort, Susie Alderson for program management, Aaron
Burmeister, Saam Ostovari for their technical guidance, and
Bart Everett for his technical direction and advice.

REFERENCES

[1] J. Walker, “Unmanned ground combat vehicle contractors selected.”
Defense Advanced Research Projects Agency News Release, Feb 2001.

[2] P. Roan, et al., Proc. IEEE ICRA, 2010, pp. 4431–4436.
[3] B. Borovac and M. Vukobratović, Int. J. Hum. Robot, vol.1, no.1, 2004.
[4] Q. Huang, et al., Proc. IEEE IROS., vol. 2, 1994, pp. 839–846.
[5] J. Kim et al., Proc. IEEE ICRA., vol. 2, 2002, pp. 1967–1972.
[6] E. Papadopoulos and D. Rey, Proc. IEEE ICRA, vol.4, 1996, pp. 3111.
[7] S. Ali, A. Moosavian, and K. Alipour, Robotics, Automation and

Mechatronics, 2006 IEEE Conf. on, 2006, pp. 1–6.
[8] K. Talke, L. Kelley, P. Longhini, and G. Catron, Proc. SPIE 9084,

Unmanned Systems Technology XVI, June 2014, pp. 90 840L–11.
[9] S. C. Peters and K. Iagnemma, Proc. IEEE ICRA., 2006, pp. 3711–3716.

[10] J. Ackermann and D. Odenthal, Proc. Int. Conf. Adv. in Vehicle Control
and Safety, 1998.

[11] M. Krid and F. Benamar, Proc. IEEE/RSJ IROS, 2011, pp. 274–279.
[12] B. Johansson and M. Gafvert, IEEE CDC., vol. 5, 2004, pp. 5461–5466.
[13] M. Richier, R. Lenain, B. Thuilot, and C. Debain, 2nd Int Conf. Comms,

Computing and Control Apps (CCCA), Dec 2012, pp. 1–6.
[14] K. Iagnemma and S. Dubowsky, Mobile Robots in Rough Terrain:

Estimation, Motion Planning, and Control with Application to Planetary
Rovers, Springer Berlin Heidelberg, 2004, vol. 12.

[15] T. Howard and A. Kelly, Int.l J. of Robot Research,v.26(2),2007, pp.141.
[16] M. Spenko, S. Dubowsky, and K. Iagnemma, Proc. 8th Int. IFAC

SYROCO, vol. 8 (1), 2006, pp. 604–609.
[17] N. Hootsmans and S. Dubowsky, Proc. IEEE Int. Conf. on Robotics and

Automation, vol. 3, 1991, pp. 2336–2341.
[18] D. Rey and E. Papadopoulos, Proc. IEEE/RSJ Int. Conf. on Intelligent

Robots and Sys., vol. 3, 1997, pp. 1273–1278.
[19] Y. Li and Y. Liu, Int. J. Vehicle Autonomous Sys, v.4(1), 2006, pp. 24.
[20] Y. Liu and G. Liu, IEEE/ASME Trans on Mech., v.15(4), 2010, pp. 623.
[21] C. Terupally, J. Zhu, and R. Williams, American Control Conference

(ACC), 2007, pp. 2861–2866.
[22] D. Boskovic and M. Krstić, Proc. IEEE Int. Conf. Control Apps., vol. 2.

1999, pp. 1768–1773.
[23] K. Narendra and A. Annaswamy, Stable Adaptive Systems, 2nd ed.

Mineola, NY: Courier Dover Publications, 2005.
[24] M. Krstić, I. Kanellakopoulos, and P. Kokotović, Systems & Control

Letters, vol. 19, no. 3, pp. 177–185, 1992.

